-
39. Room-temperature semiconductor gas sensor based on nonstoichoimetric tungsten oxide nanorod film
Y. S. Kim, S.-C. Ha, K. Kim, H. Yang, S.-Y. Choi, Y. T. Kim, J. T. Park, C. H. Lee, J. Choi, J. Paek, and K. LeeAppl. Phys. Lett., 2005, 86, 213105Porous tungsten oxide films were deposited onto a sensor substrate with a Si bulk-micromachined hotplate, by drop-coating isopropyl alcohol solution of highly crystalline tungsten oxide (WO2.72)nanorods with average 75nm length and 4nm diam... -
38. Unusually high performance photovoltaic cell based on a [60]fullerene metal cluster-porphyrin dyad SAM on an ITO electrode
Y.-J. Cho, T. K. Ahn, C. Y. Lee, K. S. Kim, H. Song, W. S. Seo, K. Lee, S. K. Kim, D. Kim, J. T. ParkJ. Am. Chem. Soc., 2005, 127, 2380A self-assembled monolayer (SAM) of a C60−triosmium cluster complex Os3(CO)7(CNR)(CNR‘)(μ3-η2:η2:η2-C60) (ZnP−C60; R = (CH2)3Si(OEt)3, R‘ = ZnP) on an ITO surface exhibits ideal electrochemical responses as well as remarkable enhancement... -
37. Ortho-Phosphorylation of PPh3 and C60-Assisted Ortho-Metallation of a Diphosphine on a Tetrairidium Cluster Framework
B. K. Park, M. A. Miah, H. Kang, K. Lee, Y.-J. Cho, D. G. Churchill, S. Park, M.-G. Choi, J. T. ParkOrganometallics, 2005, 24, 675A brief thermolysis of the bis-phosphine-substituted tetrairidium cluster Ir4(CO)10(PPh3)2 (1) in chlorobenzene (CB) converts it rapidly to the diphosphine cluster Ir4(CO)7(μ-CO)3{κ2-Ph2P(o-C6H4)PPh2} (2) in 53% yield, providing evidence... -
No Image
36. Preparation of Anatase TiO2 Thin Films with (OiPr)2Ti(CH3COCHCONEt2)2 Precursor by MOCVD
B.-J. Bae, K. Lee, W. S. Seo, M. A. Miah, and J. T. ParkBull. Korean Chem. Soc., 2004, 25, 1661The reaction of titanium tetraisopropoxide with 2 equiv of N,N-diethyl acetoacetamide affords Ti(OiPr)2(CH3COCHCONEt2)2 (1) as colorless crystals in 80% yield. Compound 1 is characterized by spectroscopic (Mass and 1H/13C NMR) and microanaly... -
35. Strong Interfullerene Electronic Communication in a Bisfullerene-Hexarhodium Sandwich Complex
K. Lee, Y. J. Choi, Y.-J. Cho, C. Y. Lee, H. Song, C. H. Lee, Y. S. Lee, and J. T. ParkJ. Am. Chem. Soc., 2004, 126, 9837Reaction of Rh6(CO)12(dppm)2 (dppm = 1,2-bis(diphenylphosphino)methane) with 1.4 equiv. of C60 in chlorobenzene at 120 °C affords a face-capping C60 derivative Rh6(CO)9(dppm)2(μ3-η2,η2,η2-C60) (1) in 73% yield. Treatment of 1 with excess... -
No Image
34. Synthesis of Os3(CO)9(m3-h2:h2:h2-C60) and Os3(CO)8(PPh3)(m3-h2:h2:h2-C60)
C. Y. Lee, H. Song, K. Lee, and J. T. ParkInorg. Synth., 2004, 34, 225. -
33. Novel [60]Fullerene-assisted Ortho-phosphorylation on a Tetrairidium Butterfly Framework
B. K. Park, M. A. Miah, G. Lee, Y.-J. Cho, K. Lee, S. Park, M.-G. Choi, and J. T. ParkAngew. Chem. Int. Ed., 2004, 43, 1712A mono- to di- and triphosphane transformation occurs on treatment of [Ir4(CO)9(PPh3)3] (1) with C60 to successively afford 2 and 3. The noninnocent, multifunctional C60 ligand plays a crucial role in transforming three PPh3 ligands into... -
32. Size-dependent Magnetic Properties of Colloidal Mn3O4 and MnO Nanoparticles
W. S. Seo, H. H. Jo, K. Lee, S. J. Oh, and J. T. ParkAngew. Chem., Int. Ed., 2004, 43, 1115Highly crystalline and monodisperse MnO and Mn3O4 nanoparticles are prepared by thermal decomposition of [Mn(acac)2] in oleylamine under an inert atmosphere in the presence and absence of a small amount of water, respectively (see pictur... -
31. Two Metal Centers Bridging Two C60 Cages as a Wide Passage for Efficient Interfullerene Electronic Interaction
G. Lee, Y.-J. Cho, B. K. Park, K. Lee, and J. T. ParkJ. Am. Chem. Soc., 2003, 125, 13920The reaction of Ir4(CO)8(PMe3)4 with excess C60 in refluxing 1,2-dichlorobenzene, followed by treatment by CNR (R = CH2C6H5) at 70 °C, affords a fullerene−metal sandwich complex Ir4(CO)3(μ4-CH)(PMe3)2(μ-PMe2)(CNR)(μ-η2,η2-C60)(μ4-η1,η1... -
30. Osmium Replica of Mesoporous Silicate MCM-48: Efficient and Recyclable Catalyst for Oxidative Cleavage and Dihydroxylation Reactions
K. Lee, Y.-H. Kim, S. B. Han, H. Kang, S. Park, W. S. Seo, J. T. Park, B. Kim, and S. ChangJ. Am. Chem. Soc., 2003, 125, 6844A three-dimensional networked osmium nanomaterial (N-Os) was prepared by a thermal decomposition of Os3(CO)12 within mesopores of MCM-48. The novel N-Os species shows high catalytic activity and excellent reusability in the oxidat... -
29. Preparation and Optical Properties of Highly Crystalline, Colloidal, and Size-controlled Indium Oxide Nanoparticles
W.S. Seo, H. H. Jo, K. Lee, and J. T. ParkAdv. Mater., 2003, 15, 795Highly crystalline and monodisperse In2O3 nanoparticles have been prepared by thermal decomposition of In(acac)3 in oleylamine under inert atmosphere. The particle size of In2O3 can be easily manipulated by changing the experimental cond... -
28. Synthesis and Optical Properties of Colloidal Tungsten Oxide Nanorods
K. Lee, W.S. Seo, and J. T. ParkJ. Am. Chem. Soc., 2003, 125, 3408 (Highlighted as "Making Photoluminescent Tungsten Oxide Nanorods," Heart Cut in Chemical Innovation (www.chemistry.org) by American Chemical Society)Thermal decomposition of W(CO)6 in oleylamine in the presence of mild oxidant Me3NO·2H2O produces tungsten oxide nanorods with diameters ranging from 3 to 6 nm. The size of nanorods can be easily varied by the employed surfactant ratio... -
No Image
27. [60]Fullerene-Metal Cluster Complexes: Novel Bonding Modes and Electronic Communication
K. Lee, H. Song, and J. T. ParkAcc. Chem. Res., 2003, 36, 78[60]Fullerene can bind a variety of metal clusters via η2-C60, μ-η2:η2-C60, and μ3-η2:η2:η2-C60 π-type bonding modes. Multiple C60 additions to a single cluster core have also been demonstrated. Modification of the coordination sphere of clu... -
26. The first observation of four-electron reduction in [60]fullerene-metal cluster self-assembled monolayers (SAMs)
Y.-J. Cho, H. Song, K. Lee, K. Kim, J. Kwak, S. Kim, and J. T. ParkChem. Commun., 2002, 2966Self-assembled monolayers (SAMs) of a μ3-η2∶η2∶η2-C60 triosmium cluster complex Os3(CO)8(CN(CH2)3Si(OEt)3)(μ3-η2∶η2∶η2-C60) (2) on ITO or Au surface exhibit ideal, well-defined electrochemical responses and remarkable electrochemical sta... -
25. Substitution Reaction of a m3-h1:h2:h1-C60 triosmium Cluster Complex and Formation of a Novel m3-h1:h1:h2-C60 Bonding Mode
H. Song, J.-I. Choi, K. Lee, M.-G. Choi, and J. T. ParkOrganometallics, 2002, 21, 5221Decarbonylation of Os3(CO)8(CNR)(μ3-CNR)(μ3-η1:η2:η1-C60) (1; R = CH2Ph) with Me3NO/MeCN and subsequent thermal reactions with various 2e-donor ligands afford the respective substitution products Os3(CO)7(CNR)(μ3-CNR)(L)(C60) (L = (μ-H)2... -
24. Electrochemistry of Carbidopenta-ruthenium Complexes of C60 and Related Clusters
A. J. Babcock, J. Li, K. Lee, and J. R. ShapleyOrganometallics, 2002, 21, 3940The electrochemical behavior of the face-coordinated C60-carbidopentaruthenium cluster complexes Ru5C(CO)11(PPh3)(μ3-η2,η2,η2-C60) (1), Ru5C(CO)10(μ-η1,η1-dppf)(μ3-η2,η2,η2-C60) (2) (dppf = 1,1‘-bis(diphenylphosphino)ferrocene), and PtRu... -
23. Ligand-Induced Conversion of p to s C60-Metal Cluster Complexes: Full Characterization of the m3-h1,h2,h1-C60 Bonding Mode
H. Song, C. H. Lee, K. Lee, and J. T. ParkOrganometallics, 21, 2514-2520The reaction of Os3(CO)9(μ3-η2:η2:η2-C60) (1) with PhCH2NPPh3 in chlorobenzene affords the benzyl isocyanide substituted product Os3(CO)8(CNR)(μ3-η2:η2:η2-C60) (2a, R = CH2Ph) in 76% yield. Photolysis of 1 in the presence of an excess of... -
22. [60]Fullerene as a Versatile Four-Electron Donor Ligand
H. Song, K. Lee, M.-G. Choi, and J. T. ParkOrganometallics, 2002, 21, 1756A new 1,2-σ-type C60 compound, Os3(CO)7(CNR)(μ3-CNR)(PPh3)(μ3-η1:η1:η2-C60) (2; R = CH2Ph), is formed from Os3(CO)8(CNR)(μ3-CNR)(μ3-η1:η2:η1-C60) (1) upon substitution of CO with PPh3 on a triosmium cluster framework. Compounds 1 and 2 a... -
21. The First Fullerene-Metal Sandwich Complex: An Unusually strong Electronic Communication between Two C60 Cages
K. Lee, H. Song, B. Kim, J. T. Park, S. Park, and M.-G. ChoiJ. Am. Chem. Soc., 2002, 124, 2872 (Highlighted as "Fullerene-Metal Sandwich," Science Concentrates in C&EN 80, 38)Reaction of Rh6(CO)9(dppm)2(μ3-η2,η2,η2-C60) (1) with C60 in refluxing chlorobenzene followed by treatment with CNR (R = CH2C6H5) at room temperature affords the first fullerene−metal sandwich complex Rh6(CO)5(dppm)2(CNR)(μ3-η2,η2,η2-C60)... -
20. Reversible Interconversion between m,h2,h2- and m3,h2,h2,h2-C60 on a Carbido Pentaosmium Cluster Framework
K. Lee, Z.-H Choi, Y.-J. Cho, H. Song, and J. T. ParkOrganometallics, 2001, 20, 5564Decarbonylation of Os5(CO)14(PPh3) by 2 equiv of Me3NO/CH3CN at room temperature followed by reaction with C60 in refluxing chlorobenzene produces Os5C(CO)11(PPh3)(μ3,η2:η2:η2-C60) (1) in 44% yield. Thermal treatment of 1 at 80 °C under ... -
19. Synthesis and Characterization of m3-h2,h2,h2-C60 trirhenium Hydrido Cluster Complexes
H. Song, Y. Lee, Z.-H. Choi, K. Lee, J. T. Park, J. Kwak, and M.-G. ChoiOrganometallics, 2001, 20, 3139The reaction of C60 with Re3(μ-H)3(CO)11(NCMe) in refluxing chlorobenzene produces Re3(μ-H)3(CO)9(μ3-η2,η2,η2-C60) (1) in 50% yield. Initial decarbonylation of 1 with Me3NO/MeCN followed by reaction with PPh3 in boiling chlorobenzene aff... -
18. First Example of the μ3-η1,η2,η1-C60 Bonding Mode: Ligand-Induced Conversion of π to σ C60–Metal Complexes
H. Song, K. Lee, C. H. Lee, J. T. Park, H. Y. Chang, and M. G. ChoiAngew. Chem. Int. Ed., 2001, 40, 1500A boat-shaped 1,4-cyclohexadiene-like ring is present in the C60 molecule with a novel σ-typeμ3-η1,η2,η1 bonding mode in the clusters 2 a and 2 b. The change in coordination mode was induced by insertion of an RNC ligand into an Os−Os bo... -
17. Reaction of GaMe3 with H2NCH2CH2NMe2: Synthesis and Characterization of Adducts and Imidogallanes
J. E. Park, B. J. Bae, K. Lee, J. T. Park, H. Y. Chang, M. G. ChoiOrganometallics, 2000, 19, 5107Reaction of GaMe3 with N,N-dimethylethylenediamine (DMEDA) produces adducts, Me3Ga:NH2C2H4NMe2 (1:1, 1) and Me3Ga:NH2C2H4NMe2:GaMe3 (2:1, 2). A fast concerted intermolecular exchange of the two inequivalent GaMe3 moieties occurs in 2 at ... -
No Image
16. Hydrocarbyl Ligand transformation on the Tungsten-triosmium Cluster Framework
J. T. Park, J. R. Shapley, K. Lee, and H. SongJ. Cluster. Sci., 2000, 11, 343A comprehensive review of the hydrocarbon derivative chemistry of WOs3 mixed-metal cluster compounds including synthesis, reactivity, ligand transformation, and solution dynamics is presented. -
15. Reversible Interconversion between m3-h2,h2,h2- to m-h2,h2-C60 on a Carbido Pentaosmium Cluster Framework
K. Lee, C. H. Lee, H. Song, J. T. Park, H. Y. Chang, and M.-G. ChoiAngew. Chem. Int. Ed., 2000, 39, 1801Carbonyl addition or elimination reactions on an Os5C cluster framework result in a novel interconversion between two C60 bonding modes: μ3-η2,η2,η2-C60 for 1 and μ-η2,η2-C60 for 2. The latter bonding mode had been elusive until now, and... -
No Image
14. Fluxional Processes and Structural Characterization of m3-h2,h2,h2-C60 triosmium Cluster Complexes, Os3(CO)9-n(PMe3)n(m3-h2,h2,h2-C60) (n=1,2,3)
H. Song, K. Lee, J. T. Park, and M.-G. ChoiJ. Organomet. Chem., 2000, 599, 49The title complex, Os3(CO)6(PMe3)3(μ3-η2,η2,η2-C60) (3), has been prepared by decarbonylation of Os3(CO)9(μ3-η2,η2,η2-C60) with three equivalents of Me3NO in the presence of excess PMe3 ligand. The solid-state structures of Os3(CO)7(PMe3)2(μ... -
No Image
13. trans-cis Isomerization and Structure of Dimeric [Me2M-m-N(H)NPh2]2 (M = Al, Ga)
D. Cho, J. E. Park, B.-J. Bae, K. Lee, B. Kim, and J. T. ParkJ. Organomet. Chem., 1999, 592, 162Reaction of MMe3 (M=Al, Ga) with one equivalent of NH2NPh2 affords a dimeric complex [Me2M-μ-N(H)NPh2]2 [M=Al (1), M=Ga (2)] as a mixture of trans and cis isomers. Purification of 1 and 2 by recrystallization gives only trans isomers 1a and ... -
No Image
12. Synthesis and Characterization of (CH3C(CH2PPh2)3)RhH(h2-C60)
H. Song, K. Lee, J. T. Park, and I.-H. SuhJ. Organomet. Chem., 1999, 584, 361The title complex, (triphos)RhH(η2-C60) (2) (triphos=CH3C(CH2PPh2)3), was prepared by the reaction (80°C, toluene) of C60 with a trihydride rhodium complex (triphos)RhH3(1) in high yield (86%) as green crystals and characterized by spectrosc... -
11. Synthesis, Structure, and Electrochemical Studies of m3-h2,h2,h2-C60 triosmium Complexes
H. Song, K. Lee, J. T. Park, and M.-G. ChoiOrganometallics, 1998, 17, 4477Two μ3-η2,η2,η2-C60 complexes, Os3(CO)8(PPh3)(μ3-η2,η2,η2-C60) (8) and Os3(CO)7(PMe3)2(μ3-η2,η2,η2-C60) (9), have been prepared by decarbonylation of Os3(CO)9(μ3-η2,η2,η2-C60) (6) with Me3NO/MeCN in the presence of phosphine ligands. The... -
10. Substitution Site Specificity on the Ru10C2 Cluster Framework. Multiple Convergent Pathways to the Mixed Hydrocarbon Ligand Derivative Ru10C2(CO)21(NBD)(C2Ph2)
K. Lee and J. R. ShapleyOrganometallics, 1998, 17, 4368-4373The substitution of carbonyl ligands in the edge-shared bioctahedral cluster [PPN]2[Ru10C2(CO)24] by two types of 4e donor π-bonding ligands, viz., a diene (norbornadiene) and an alkyne (diphenylacetylene), has been investigated under va... -
9. Reversible transformation between Methylene and Methylidyne-Hydride on the Ru10C2 Framework
K. Lee, S. R. Wilson, and J. R. ShapleyOrganometallics, 1998, 17, 4113Oxidative substitution of [Ru10C2(CO)22(NBD)]2- with ferrocenium/diazomethane forms a methylene derivative, Ru10C2(CO)22(NBD)(CH2), in which the methylene ligand symmetrically bridges two adjacent apical ruthenium centers in the e... -
8. Substitution of [Ru10C2(CO)24]2- with Allene. Reversible Formation of [Ru10C2(CO)22(C3H4)2- and [Ru10C2(CO)20(C3H4)2]2
K. Lee and J. R. ShapleyOrganometallics, 1998, 17, 4030Substitution of carbonyl ligands in [Ru10C2(CO)24]2- (1) by allene proceeds cleanly in diglyme at 90 °C (1 atm) to afford the monosubstituted derivative [Ru10C2(CO)22(μ-η2:η2-C3H4)]2- (2). Treatment of either 1 or 2 with allene at... -
7. Face Coordinated C60 Complexes with Carbido Pentaruthenium Cluster Cores including a Bimetallic Platinum-Pentaruthenium Complex
K. Lee and J. R. ShapleyOrganometallics, 1998, 17, 3020Interaction of C60 with Ru5C(CO)15 or PtRu5C(CO)14(COD) in hot chlorobenzene, followed by treatment with solubilizing phosphines, provides compounds with hexahapto coordination of C60 to a Ru3 face of the square pyramidal Ru5C or octahed... -
No Image
6. High Nuclearity Hydridodecaruthenium Clusters
M. P. Cifuentes, M. G. Humphrey, J. R. Shapley, K. LeeInorg. Synth., 1998, 32, 287. -
No Image
5. Tri(μ-carbonyl)Nonacarbonyltetrarhodium, Rh4(μ-CO)3(CO)9
Ph. Serp, Ph. Kalck, R. Feurer, R. Morancho, K. Lee, J. R. ShapleyInorg. Synth., 1998, 32, 284. -
No Image
4. Platinum-Ruthenium Carbonyl Cluster Complexes
R. D. Adams, T. S. Barnard, J. E. Cortopassi, W. Wu, Z. Li, J. R. Shapley, K. LeeInorg. Synth., 1998, 32, 280. -
3. Oxidative Substitution of [Ru10C2(CO)24]2- with Disubstituted Alkynes. Facile Formation and Reduction of Ru10C2(CO)23(C2RR')
J. W. Benson, T. Ishida, K. Lee, S. R. Wilson, and J. R. ShapleyOrganometallics, 1997, 16, 4929Oxidation of the decaruthenium carbonyl cluster [Z]2[Ru10C2(CO)24] (1) (Z+ = PPN+, Et4N+) with [Cp2Fe][BF4] (2 equiv) at room temperature in the presence of disubstituted alkynes forms the neutral derivatives Ru10C2(CO)23(C2RR‘) (2, R, R... -
No Image
2. Coordination of C60 to Penta- and Hexaruthenium Cluster Frames
K. Lee, H.-F. Hsu, and J. R. ShapleyOrganometallics, 1997, 16, 3876In refluxing chlorobenzene C60 reacts with Ru5C(CO)15 or with Ru6C(CO)17 to form new complexes, which are isolated following treatment with tertiary phosphines to give the structurally characterized, facebonded derivatives Ru5C(CO)11(PPh... -
No Image
1. Characterization and structures of intermediates in the reactivity of CpWOs3(CO)11(μ3-CTol) towards dihydrogen and water
J. T. Park, J.-H. Chung, H. Song, K. Lee, J.-H. Lee, J.-R. Park, and I.-H. SuhJ. Organomet. Chem., 1996, 526, 215Initial decarbonylation of CpWos3(Co)11(μ3-CTol) (1: Cp = η5-C5H5, Tol = p-C6H4Mc) with the Me3NO/MeCN followed by reaction with dihydrogen and water produces a dihydrido comlex CpWOs3(CO)10(μ3-CTol)(μ-H)2 (2), a ‘butterfly’ cluster with a 6...
Designed by sketchbooks.co.kr / sketchbook5 board skin